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Shared Memory Systems
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• Threaded programming is most often used on shared 
memory parallel computers. 

• A shared memory computer consists of a number of 
processing units (CPUs) together with some memory. 

• Key feature of shared memory systems is single 
address space across the whole memory system. 

• every CPU can read or write all memory locations in the system  

• one logical memory space 

• all CPUs refer to a memory location using the same address



Conceptual Model
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Real Hardware
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• Real shared memory hardware is more complicated than 
this … 

• Memory may be split into multiple smaller units 

• There may be multiple levels of cache memory 

some of these levels may be shared between subsets of processors 

• The interconnect may have a more complex topology 

• … but a single space address is still supported 

• Hardware complexity can affect the performance of programs, but 
not their correctness.



Real Hardware Example
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Threaded Programming Model
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• The programming model for shared memory is based on the notions of threads 

• threads are like processes, except that threads can share memory with each other (as well 
as having private memory) 

• Shared data can be accessed by all threads 

• Private data can only be accessed by the owning thread 

• Different threads can follow different flows of control through the same 
program 

• each thread has its own program counter 

• Usually run one thread per CPU/core 

• but could be more 

• can have hardware support for multiple threads per core



Threads (cont.)
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Thread Communication
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• In order to have useful parallel programs, threads 
must be able to exchange data with each other 

• Threads communicate with each via reading and 
writing shared data 

• thread 1 writes a value to a shared variable A 

• thread 2 can then read the value from A 

• Note: there is no notion of messages in this model



Thread Communication
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Synchronisation
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• By default, threads execute asynchronously 

• Each thread proceeds through program instructions independently of 
other threads 

• This means we need to ensure that actions on shared variables occur in 
the correct order: e.g. 

• thread 1 must write variable A before thread 2 reads it 

                                  or 

• thread 1 must read variable A before thread 2 writes it 

• Note that updates to shared variables (e.g. a = a + 1) are not atomic! 

• If two threads try to do at the same time, one of the updates may get 
overwritten.



Synchronisation Example
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Parallel Loops
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• Loops are the main source of parallelism in many 
applications 

• If the iterations of a loop are independent (can be 
done any order) then we can share out the iterations 
between different threads 

• e.g. if we have two threads and the loop 

we could do iteration 0-49 on one thread and 
iterations 50-99 on the other.

for (i=0; i<100; i++) {
a[i] += b[i];

}



Reductions
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• A reduction produces a single value from associative 
operations such as addition, multiplication, max, min, and, or. 

• For example: 

• Allowing only one thread at a time to update b would remove 
all parallelism 

• Instead, each thread can accumulate its own private copy, 
then these copies are reduced to give final result 

• If the number of operations is much larger than the number of 
threads, most of the operations can proceed in parallel

b = 0;
for (i=0; i<n; i++)

b += a[i];



OpenMP 
Fundamentals



What is OpenMP
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• OpenMP is an API designed for programming shared 
memory parallel computers 

• OpenMP uses the concepts of threads 

• OpenMP is a set of extensions to C, C++ and Fortran 

• The extensions consist of: 

• Compiler directives 

• Runtime library routines 

• Environment variables



Directives and Sentinels
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• A directive is a special line of source code with meaning 
only to certain compilers 

• A directive is distinguished by a sentinel at the start of 
the line 

• OpenMP sentinels are: 

• C / C++: #pragma omp 

• Fortran : !$OMP


• This means that OpenMP directives are ignored if the 
code is compiled as regular sequential C/C++/Fortran



Parallel Region
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• The parallel region is the basic parallel construct in OpenMP 

• A parallel region defines a section of a program 

• Program begins execution on a single thread (the master thread) 

• When the first parallel region is encountered, master thread 
creates a team of threads (fork/join model) 

• Every thread executes the statements which are inside the 
parallel region 

• At the end of the parallel region, the master thread waits for the 
other threads to finish, and continues executing the next 
statements



Parallel Region
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Shared and Private Data
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• Inside a parallel region, variables can either be shared 
or private 

• All threads see the same copy of shared variables 

• All threads can read or write shared variables 

• Each thread has its own copy of private variables: 
these are invisible to other threads 

• A private variable can only be read or written by its 
own thread



Parallel Loops
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• In a parallel region, all threads execute the same code 

• OpenMP has also directives which indicate that work should be divided up 
between threads, not replicated 

• this is called worksharing 

• Since loops are the main source of parallelism in many applications, 
OpenMP has an extensive support for parallelising loops 

• There are a number of options to control which loop iterations are executed 
by which threads 

• It is up to programmer to ensure that the iterations of a parallel loop are 
independent 

• Only loops where the iteration count can be computed before the execution 
of the loop begins can be parallelised in this way



Synchronisation
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• The main synchronisation concepts used in OpenMP are: 

• Barrier 

• all threads must arrive at a barrier before any thread can proceed past it 

• e.g. delimiting phases of computation 

• Critical regions 

• a section of code which only one thread at a time can enter 

• e.g. modification of shared variables 

• Atomic update 

• an update to a variable which can be performed only by one thread at a time 

• e.g. modification of shared variables (special case)



Brief History of OpenMP
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• Historical lack of standardisation in shared memory directives 

• each hardware vendor provided a different API 

• mainly directive based 

• almost all for Fortran 

• hard to write portable code 

• OpenMP forum is set up by Digital, IBM, Intel, KAI and SGI. Now 
includes most major vendors (and some academic organisations) 

• OpenMP Fortran standard released in October 1997, minor revision 
(1.1) in November 1999, Major revision (2.0) in November 2000 

• OpenMP C/C++ standard released October 1998. Major revision (2.0) 
in March 2002



History (cont.)
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• Combined OpenMP C/C++/Fortran standart (2.5) released in May 2005 

• no new features, but extensive rewriting and clarification 

• Version 3.0 released in May 2008 

• new features, including tasks, better support for loop parallelism and nested parallelism  

• Version 3.1 released in June 2011 

• corrections and some minor new features 

• most current compilers support this 

• Version 4.0 released in July 2013 

• accelerator offloading, thread affinity, more task support 

• now appearing in implementations 

• Version 4.5 released in November 2015 

• corrections and a few new features

www.openmp.org

http://www.openmp.org


Compiling and Running OpenMP Programs
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• OpenMP is built-in to most of the compilers you are likely to use 

• To compile OpenMP program you need to add a (compiler-specific) flag to 
your compile and link commands 

• -fopenmp for gcc/gfortran 

• -openmp for Intel compilers 

• The number of threads which will be used is determined at runtime by 
OMP_NUM_THREADS environment variable 

• set this before you run the program 

• e.g. export OMP_NUM_THREADS=4


• Run in the same way you would a sequential program 

• type the name of the executable



Exercise
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• “Hello World” program 

• Aim: to compile and run a trivial OpenMP program 

• Vary the number of threads using the 
OMP_NUM_THREADS environment variable 

• Run the code several times. Is the output always the 
same?



Parallel Regions



Parallel Region Directive
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• Code within a parallel region is executed by all 
threads 

• Syntax: 

C/C++: 

Fortran: !$OMP PARALLEL
block

!$OMP END PARALLEL

#pragma omp parallel
{

block
}



Parallel Region Directive (cont.)
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fred();
#pragma omp parallel
{
billy();

}
daisy();



Useful Functions
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• Often useful to find out number of threads being used 

Fortran: 

C/C++: 

Note: returns 1 if called outside parallel region!

USE OMP_LIB
INTEGER FUNCTION OMP_GET_NUM_THREADS()

#include <omp.h>
int omp_get_num_threads(void);



Useful Functions (cont.)
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• Also useful to find out number of the executing thread 

Fortran: 

C/C++: 

Note: Takes value between 0 and OMP_GET_NUM_THREADS() - 1

USE OMP_LIB
INTEGER FUNCTION OMP_GET_THREAD_NUM()

#include <omp.h>
int omp_get_thread_num(void);



Clauses
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• Specify additional information in the parallel region 
directive through clauses: 

C/C++: #pragma omp parallel [clauses] 

Fortran: !$OMP PARALLEL [clauses] 

• Clauses are comma or space separated in Fortran, 
space separated in C/C++



Shared and Private Variables
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• Inside a parallel region, variables can be either 
shared (all threads see same copy) or private (each 
thread has its own copy) 

• shared, private and default are OpenMP 
clauses 

C/C++: 

Fortran:

shared(list)
private(list)
default(shared|none)

SHARED(list)
PRIVATE(list)
DEFAULT(SHARED|PRIVATE|NONE)



Shared and Private (cont.)
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• On entry to a parallel region, private variables are 
uninitialised 

• Variables declared inside the scope of the parallel region are 
automatically private 

• After the parallel region ends, the original variable is 
unaffected by any changes to private copies 

• Not specifying a DEFAULT clause is the same as specifying 
DEFAULT(SHARED) 

• Danger! 

• Always use DEFAULT(NONE)



Shared and Private (cont.)
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• Example: each thread initializes its own column of a shared 
array

!$OMP PARALLEL  DEFAULT (NONE), PRIVATE (I, MYID),
!$OMP& SHARED(A,N)
MYID = OMP_GET_THREAD_NUM() + 1
DO I = 1, N
A(I, MYID) = 1.0

END DO
!$OMP END PARALLEL



Multi-line Directives
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C/C++: 
#pragma omp parallel default(none) \ 

private(i,myid) shared(a,n) 


Fortran: fixed source form 
!$OMP PARALLEL DEFAULT(NONE), PRIVATE(I,MYID),
!$OMP& SHARED(A,N)

Fortran: free source form 
!$OMP PARALLEL DEFAULT(NONE), PRIVATE(I,MYID), &
!$OMP SHARED(A,N)



Initializing Private Variables
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• Private variables are uninitialized at the start of the 
parallel region 

• If we wish to initialize them, we use FIRSTPRIVATE 
clause: 

C/C++: firstprivate(list) 

Fortran: FIRSTPRIVATE(list)



Initializing Private Variables (cont.)
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b = 23.0;
. . . . .
#pragma omp parallel firstprivate(b), 
private(i, myid)
{

myid = omp_get_thread_num();
for (i=0; i<n; i++) {

b += c[myid][i];
}

c[myid][n] = b;
}



Reductions
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• A reduction produces a single value from associative 
operations such as addition, multiplication, max, min, 
and, or 

• Would like each thread to reduce into a private copy, 
then reduce all these to give final result 

• Use REDUCTION clause: 

C/C++:  reduction(op: list) 

Fortran: REDUCTION(op: list)


• Can have reduction arrays in Fortran, but not in C/C++



Reductions (cont.)
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B = 10
!$OMP PARALLEL REDUCTION (+:B), 
!$OMP& PRIVATE(I, MYID)

MYID = OMP_GET_THREAD_NUM() + 1
DO I = 1, N

B = B + C[I][MYID]
END DO

!$OMP END PARALLEL
A = B

Value in original variable is saved Each thread gets a 
private copy of b,  

initialized to 0

All accesses inside the parallel  
region are to the private copies

At the end of the parallel region,  
all the private copies are added  

into the original variable



Exercise
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• Area of the Mandelbrot set 

• Aim: introduction to using parallel regions 

• Estimate the area of the Mandelbrot set by Monte Carlo sampling 

• Generate a grid of complex numbers in a box surrounding the set 

• Test each number to see if it is in the set or not 

• Ratio of points inside a total number of points gives an estimate of the area 

• Testing of points is independent - parallels with a parallel region



Worksharing



Worksharing Directives
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• Directives which appear inside a parallel region and 
indicate how work should be shared out between 
threads are 

• Parallel DO/for loops 

• Single directive 

• Master directive



Parallel DO/for Loops
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• Loops are the most common source of parallelism in most 
codes. Therefore, parallel loop directives are vey important! 

• A parallel DO/for loop divides up the iterations of the loop 
between threads 

• The loop directive appears inside a parallel region and 
indicates that the work should be shared out between 
threads, instead of replication 

• There is a synchronisation point at the end of the loop: all 
threads must finish their iterations before any thread can 
proceed



Parallel DO/for Loops (cont.)
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Syntax:

C/C++: 

Fortran: !$OMP DO [clauses]
DO loop

!$OMP END DO

#pragma omp for [clauses]
for loop



Restrictions in C/C++
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• Because the for loop in C is a general while loop, 
there are restrictions on the form it can take 

• It has two determinable trip count - it must be of the 
form 
for (var = a; var logical-op b; incr-exp)

where logical-op is one of <, <=, >, >=

and incr-exp is var = var +/- incr or semantic

equivalent such as var++

also can not modify var within the loop body  



Parallel Loops (Example)
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!$OMP PARALLEL
!$OMP DO
DO i=1,n
b(i)=(a(i)-a(i-1))*0.5

END DO
!$OMP END DO
!$OMP END PARALLEL

#pragma omp parallel
{
#pragma omp for
for (int i=1, i<=n, i++) {

b(i)=(a(i)-a(i-1))*0.5;
}

}



Parallel DO/for Directive
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• This construct is common that there is shorthand form 
which combines parallel region and DO/for loops 

C/C++: 

Fortran: !$OMP PARALLEL DO [clauses] 
do loop

!$OMP END PARALLEL DO

#pragma omg parallel for [clauses]

for loop



Clauses
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• DO/for directive can take PRIVATE, FIRSTPRIVATE and 
REDUCTION clauses which refer to the scope of the 
loop 

• Note that the parallel loop variable is PRIVATE by default 

• loop indices are private by default in Fortran, but not in C 

• PARALLEL DO/for directive can take all clauses 
available for PARALLEL directive 

• PARALLEL DO/for is not the same as DO/for or the same 
as PARALLEL



Parallel DO/for Loops (cont.)
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• With no additional clauses, the DO/for directive will 
partition the iterations as equally as possible between 
the threads 

• However this is implementation dependent, and there 
is still some ambiguity 

e.g. 7 iterations, 3 threads. Could partition as 3+3+1 or 3+2+2



SCHEDULE Clause
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• The SCHEDULE clause gives a variety of options for 
specifying which loop iteration are executed by which thread 

• Syntax: 

C/C++: schedule(kind[, chunksize]) 

Fortran: SCHEDULE(kind[, chunksize]) 

where kind is one of 

STATIC, DYNAMIC, GUIDED, AUTO or RUNTIME

and chunksize is an integer expression with positive value 

• e.g. !$OMP DO SCHEDULE(DYNAMIC, 4) 



STATIC Schedule
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• With no chunksize specified, the iteration space is 
divided into (approximately) equal chunks, and one 
chunk is assigned to each thread in order (block 
schedule) 

• If chunksize is specified, the iteration space is divided 
into chunks, each of chunksize iterations, and the 
chunks are assigned cyclically to each thread in order 
(block cyclic schedule)



STATIC Schedule
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DYNAMIC Schedule
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• DYNAMIC schedule divides the iteration space up into 
chunks of size chunksize, and assigns them to 
threads on a first-come-first-served basis 

• i.e. as a thread finish a chunk, it is assigned the next 
chunk in the list 

• When no chunksize is specified, it defaults to 1



GUIDED Schedule
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• GUIDED schedule is similar to DYNAMIC, but the 
chunk starts off large and gets smaller exponentially 

• The size of the next chunk is proportional to the 
number of remaining iteration divided by the number 
of threads 

• The chunksize specifies the minimum size of the 
chunks 

• When no chunksize is specified, it defaults to 1



DYNAMIC and GUIDED Schedules
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AUTO Schedule
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• Lets the runtime have full of freedom to choose its own 
assignment of iterations to threads 

• If the parallel loop is executed many times, the 
runtime can evolve a good schedule which has good 
load balance and low overheads



Choosing a Schedule
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• STATIC best for load balanced loops - least overhead 

• STATIC, n good for loops with mild or smooth load 
imbalance, but can induce overheads 

• DYNAMIC useful if iterations have widely varying loads, 
but ruins data locality 

• GUIDED often less expensive than DYNAMIC, but beware 
of loops where the first iterations are the most expensive 

• AUTO may be useful if the loop is executed many times 
over



SINGLE Directive
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• Indicates that a block of code is to be executed by a 
single thread only 

• The first thread to reach the SINGLE directive will 
execute the block 

• There is a synchronisation point at the end of the 
block: all other threads wait until block has been 
executed



SINGLE Directive (cont.)
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Syntax:

C/C++: 

Fortran !$OMP SINGLE [clauses]
block

!$OMP END SINGLE

#pragma omp single [clauses]
structured block



SINGLE Directive (cont.)

63

#pragma omp parallel
{
setup(x);
#pragma omp single
{
input(y);

}
work(x,y);

}



SINGLE Directive (cont.)
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• SINGLE directive can take PRIVATE and FIRSTPRIVATE 
clauses 

• Directive must contain a structured block: can not 
branch into or out of it



MASTER Directive
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• Indicates that a block of code should be executed by 
the master thread (thread 0) only 

• There is no synchronisation at the end of the block: 
other threads skip the block and continue executing



MASTER Directive (cont.)

66

Syntax:

C/C++: 

Fortran !$OMP MASTER
block

!$OMP END MASTER

#pragma omp master
structured block



Synchronisation



Why is It Required?
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• Need to synchronise actions on shared variables 

• Need to ensure correct ordering of reads and writes 

• Need to protect updates to shared variables (not 
atomic by default)



BARRIER Directive
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• No thread can proceed reached a barrier until all the 
other threads have arrived 

• Note that there is an implicit barrier at the end of DO/for, 
SECTIONS and SINGLE directives 

• Syntax: 

C/C++: #pragma omp barrier 

Fortran: !$OMP BARRIER

• Either all threads or none must encounter the barrier: 
otherwise DEADLOCK!



BARRIER Directive (cont.)
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Example:

• Barrier required to force synchronisation on a



Critical Sections
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• A critical section is a block of code which can be 
executed by only one thread at a time 

• Can be used to protect updates to shared variables 

• The CRITICAL directive allows critical sections to be 
named 

• If one thread is in a critical section with a given name, 
no other thread may be in a critical section with the 
same name (though they can be in critical sections 
with other names)



Critical Directive
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• In Fortran, the names on the directive pair must match 

• If the name is omitted, a null name is assumed (all unnamed 
critical sections effectively have the same null name)

C/C++: 

Fortran !$OMP CRITICAL [(name)]
block

!$OMP END CRITICAL [(name)]

#pragma omp critical [(name)]
structured block



Critical Directive (cont.)
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Example: Pushing and popping a task stack 



Atomic Directive
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Atomic Directive (cont.)
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Atomic Directive (cont.)
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QUESTIONS
or

COMMENTS!


