
Shared Memory Programming
with OpenMP

Süha Tuna
Informatics Institute, Istanbul Technical University

February 12th, 2016

(An UHeM Training)

Outline - I

2

• Shared Memory Systems

• Threaded Programming Model

• Thread Communication

• Synchronisation

• Parallel Loops

• Reductions

• OpenMP Fundamentals

• Basic Concepts in OpenMP

• History of OpenMP

• Compiling and Running OpenMP Programs

Outline - II

3

• Parallel Regions

• Parallel region directive

• Some useful functions

• Shared and Private variables

• Reductions

• Work sharing

• Parallel for/DO loops

• Scheduling for loops

• Single directive

• Master directive

• Synchronisation

Shared Memory
Systems

Shared Memory Systems

5

• Threaded programming is most often used on shared
memory parallel computers.

• A shared memory computer consists of a number of
processing units (CPUs) together with some memory.

• Key feature of shared memory systems is single
address space across the whole memory system.

• every CPU can read or write all memory locations in the system

• one logical memory space

• all CPUs refer to a memory location using the same address

Conceptual Model

6

Real Hardware

7

• Real shared memory hardware is more complicated than
this …

• Memory may be split into multiple smaller units

• There may be multiple levels of cache memory

some of these levels may be shared between subsets of processors

• The interconnect may have a more complex topology

• … but a single space address is still supported

• Hardware complexity can affect the performance of programs, but
not their correctness.

Real Hardware Example

8

Threaded Programming Model

9

• The programming model for shared memory is based on the notions of threads

• threads are like processes, except that threads can share memory with each other (as well
as having private memory)

• Shared data can be accessed by all threads

• Private data can only be accessed by the owning thread

• Different threads can follow different flows of control through the same
program

• each thread has its own program counter

• Usually run one thread per CPU/core

• but could be more

• can have hardware support for multiple threads per core

Threads (cont.)

10

Thread Communication

11

• In order to have useful parallel programs, threads
must be able to exchange data with each other

• Threads communicate with each via reading and
writing shared data

• thread 1 writes a value to a shared variable A

• thread 2 can then read the value from A

• Note: there is no notion of messages in this model

Thread Communication

12

Synchronisation

13

• By default, threads execute asynchronously

• Each thread proceeds through program instructions independently of
other threads

• This means we need to ensure that actions on shared variables occur in
the correct order: e.g.

• thread 1 must write variable A before thread 2 reads it

 or

• thread 1 must read variable A before thread 2 writes it

• Note that updates to shared variables (e.g. a = a + 1) are not atomic!

• If two threads try to do at the same time, one of the updates may get
overwritten.

Synchronisation Example

14

Parallel Loops

15

• Loops are the main source of parallelism in many
applications

• If the iterations of a loop are independent (can be
done any order) then we can share out the iterations
between different threads

• e.g. if we have two threads and the loop

we could do iteration 0-49 on one thread and
iterations 50-99 on the other.

for (i=0; i<100; i++) {
a[i] += b[i];

}

Reductions

16

• A reduction produces a single value from associative
operations such as addition, multiplication, max, min, and, or.

• For example:

• Allowing only one thread at a time to update b would remove
all parallelism

• Instead, each thread can accumulate its own private copy,
then these copies are reduced to give final result

• If the number of operations is much larger than the number of
threads, most of the operations can proceed in parallel

b = 0;
for (i=0; i<n; i++)

b += a[i];

OpenMP
Fundamentals

What is OpenMP

18

• OpenMP is an API designed for programming shared
memory parallel computers

• OpenMP uses the concepts of threads

• OpenMP is a set of extensions to C, C++ and Fortran

• The extensions consist of:

• Compiler directives

• Runtime library routines

• Environment variables

Directives and Sentinels

19

• A directive is a special line of source code with meaning
only to certain compilers

• A directive is distinguished by a sentinel at the start of
the line

• OpenMP sentinels are:

• C / C++: #pragma omp

• Fortran : !$OMP

• This means that OpenMP directives are ignored if the
code is compiled as regular sequential C/C++/Fortran

Parallel Region

20

• The parallel region is the basic parallel construct in OpenMP

• A parallel region defines a section of a program

• Program begins execution on a single thread (the master thread)

• When the first parallel region is encountered, master thread
creates a team of threads (fork/join model)

• Every thread executes the statements which are inside the
parallel region

• At the end of the parallel region, the master thread waits for the
other threads to finish, and continues executing the next
statements

Parallel Region

21

Shared and Private Data

22

• Inside a parallel region, variables can either be shared
or private

• All threads see the same copy of shared variables

• All threads can read or write shared variables

• Each thread has its own copy of private variables:
these are invisible to other threads

• A private variable can only be read or written by its
own thread

Parallel Loops

23

• In a parallel region, all threads execute the same code

• OpenMP has also directives which indicate that work should be divided up
between threads, not replicated

• this is called worksharing

• Since loops are the main source of parallelism in many applications,
OpenMP has an extensive support for parallelising loops

• There are a number of options to control which loop iterations are executed
by which threads

• It is up to programmer to ensure that the iterations of a parallel loop are
independent

• Only loops where the iteration count can be computed before the execution
of the loop begins can be parallelised in this way

Synchronisation

24

• The main synchronisation concepts used in OpenMP are:

• Barrier

• all threads must arrive at a barrier before any thread can proceed past it

• e.g. delimiting phases of computation

• Critical regions

• a section of code which only one thread at a time can enter

• e.g. modification of shared variables

• Atomic update

• an update to a variable which can be performed only by one thread at a time

• e.g. modification of shared variables (special case)

Brief History of OpenMP

25

• Historical lack of standardisation in shared memory directives

• each hardware vendor provided a different API

• mainly directive based

• almost all for Fortran

• hard to write portable code

• OpenMP forum is set up by Digital, IBM, Intel, KAI and SGI. Now
includes most major vendors (and some academic organisations)

• OpenMP Fortran standard released in October 1997, minor revision
(1.1) in November 1999, Major revision (2.0) in November 2000

• OpenMP C/C++ standard released October 1998. Major revision (2.0)
in March 2002

History (cont.)

26

• Combined OpenMP C/C++/Fortran standart (2.5) released in May 2005

• no new features, but extensive rewriting and clarification

• Version 3.0 released in May 2008

• new features, including tasks, better support for loop parallelism and nested parallelism

• Version 3.1 released in June 2011

• corrections and some minor new features

• most current compilers support this

• Version 4.0 released in July 2013

• accelerator offloading, thread affinity, more task support

• now appearing in implementations

• Version 4.5 released in November 2015

• corrections and a few new features

www.openmp.org

http://www.openmp.org

Compiling and Running OpenMP Programs

27

• OpenMP is built-in to most of the compilers you are likely to use

• To compile OpenMP program you need to add a (compiler-specific) flag to
your compile and link commands

• -fopenmp for gcc/gfortran

• -openmp for Intel compilers

• The number of threads which will be used is determined at runtime by
OMP_NUM_THREADS environment variable

• set this before you run the program

• e.g. export OMP_NUM_THREADS=4

• Run in the same way you would a sequential program

• type the name of the executable

Exercise

28

• “Hello World” program

• Aim: to compile and run a trivial OpenMP program

• Vary the number of threads using the
OMP_NUM_THREADS environment variable

• Run the code several times. Is the output always the
same?

Parallel Regions

Parallel Region Directive

30

• Code within a parallel region is executed by all
threads

• Syntax:

C/C++:

Fortran: !$OMP PARALLEL
block

!$OMP END PARALLEL

#pragma omp parallel
{

block
}

Parallel Region Directive (cont.)

31

fred();
#pragma omp parallel
{
billy();

}
daisy();

Useful Functions

32

• Often useful to find out number of threads being used

Fortran:

C/C++:

Note: returns 1 if called outside parallel region!

USE OMP_LIB
INTEGER FUNCTION OMP_GET_NUM_THREADS()

#include <omp.h>
int omp_get_num_threads(void);

Useful Functions (cont.)

33

• Also useful to find out number of the executing thread

Fortran:

C/C++:

Note: Takes value between 0 and OMP_GET_NUM_THREADS() - 1

USE OMP_LIB
INTEGER FUNCTION OMP_GET_THREAD_NUM()

#include <omp.h>
int omp_get_thread_num(void);

Clauses

34

• Specify additional information in the parallel region
directive through clauses:

C/C++: #pragma omp parallel [clauses]

Fortran: !$OMP PARALLEL [clauses]

• Clauses are comma or space separated in Fortran,
space separated in C/C++

Shared and Private Variables

35

• Inside a parallel region, variables can be either
shared (all threads see same copy) or private (each
thread has its own copy)

• shared, private and default are OpenMP
clauses

C/C++:

Fortran:

shared(list)
private(list)
default(shared|none)

SHARED(list)
PRIVATE(list)
DEFAULT(SHARED|PRIVATE|NONE)

Shared and Private (cont.)

36

• On entry to a parallel region, private variables are
uninitialised

• Variables declared inside the scope of the parallel region are
automatically private

• After the parallel region ends, the original variable is
unaffected by any changes to private copies

• Not specifying a DEFAULT clause is the same as specifying
DEFAULT(SHARED)

• Danger!

• Always use DEFAULT(NONE)

Shared and Private (cont.)

37

• Example: each thread initializes its own column of a shared
array

!$OMP PARALLEL DEFAULT (NONE), PRIVATE (I, MYID),
!$OMP& SHARED(A,N)
MYID = OMP_GET_THREAD_NUM() + 1
DO I = 1, N
A(I, MYID) = 1.0

END DO
!$OMP END PARALLEL

Multi-line Directives

38

C/C++:
#pragma omp parallel default(none) \

private(i,myid) shared(a,n)

Fortran: fixed source form
!$OMP PARALLEL DEFAULT(NONE), PRIVATE(I,MYID),
!$OMP& SHARED(A,N)

Fortran: free source form
!$OMP PARALLEL DEFAULT(NONE), PRIVATE(I,MYID), &
!$OMP SHARED(A,N)

Initializing Private Variables

39

• Private variables are uninitialized at the start of the
parallel region

• If we wish to initialize them, we use FIRSTPRIVATE
clause:

C/C++: firstprivate(list)

Fortran: FIRSTPRIVATE(list)

Initializing Private Variables (cont.)

40

b = 23.0;
.
#pragma omp parallel firstprivate(b),
private(i, myid)
{

myid = omp_get_thread_num();
for (i=0; i<n; i++) {

b += c[myid][i];
}

c[myid][n] = b;
}

Reductions

41

• A reduction produces a single value from associative
operations such as addition, multiplication, max, min,
and, or

• Would like each thread to reduce into a private copy,
then reduce all these to give final result

• Use REDUCTION clause:

C/C++: reduction(op: list)

Fortran: REDUCTION(op: list)

• Can have reduction arrays in Fortran, but not in C/C++

Reductions (cont.)

42

B = 10
!$OMP PARALLEL REDUCTION (+:B),
!$OMP& PRIVATE(I, MYID)

MYID = OMP_GET_THREAD_NUM() + 1
DO I = 1, N

B = B + C[I][MYID]
END DO

!$OMP END PARALLEL
A = B

Value in original variable is saved Each thread gets a
private copy of b,

initialized to 0

All accesses inside the parallel
region are to the private copies

At the end of the parallel region,
all the private copies are added

into the original variable

Exercise

43

• Area of the Mandelbrot set

• Aim: introduction to using parallel regions

• Estimate the area of the Mandelbrot set by Monte Carlo sampling

• Generate a grid of complex numbers in a box surrounding the set

• Test each number to see if it is in the set or not

• Ratio of points inside a total number of points gives an estimate of the area

• Testing of points is independent - parallels with a parallel region

Worksharing

Worksharing Directives

45

• Directives which appear inside a parallel region and
indicate how work should be shared out between
threads are

• Parallel DO/for loops

• Single directive

• Master directive

Parallel DO/for Loops

46

• Loops are the most common source of parallelism in most
codes. Therefore, parallel loop directives are vey important!

• A parallel DO/for loop divides up the iterations of the loop
between threads

• The loop directive appears inside a parallel region and
indicates that the work should be shared out between
threads, instead of replication

• There is a synchronisation point at the end of the loop: all
threads must finish their iterations before any thread can
proceed

Parallel DO/for Loops (cont.)

47

Syntax:

C/C++:

Fortran: !$OMP DO [clauses]
DO loop

!$OMP END DO

#pragma omp for [clauses]
for loop

Restrictions in C/C++

48

• Because the for loop in C is a general while loop,
there are restrictions on the form it can take

• It has two determinable trip count - it must be of the
form
for (var = a; var logical-op b; incr-exp)

where logical-op is one of <, <=, >, >=

and incr-exp is var = var +/- incr or semantic

equivalent such as var++

also can not modify var within the loop body

Parallel Loops (Example)

49

!$OMP PARALLEL
!$OMP DO
DO i=1,n
b(i)=(a(i)-a(i-1))*0.5

END DO
!$OMP END DO
!$OMP END PARALLEL

#pragma omp parallel
{
#pragma omp for
for (int i=1, i<=n, i++) {

b(i)=(a(i)-a(i-1))*0.5;
}

}

Parallel DO/for Directive

50

• This construct is common that there is shorthand form
which combines parallel region and DO/for loops

C/C++:

Fortran: !$OMP PARALLEL DO [clauses]
do loop

!$OMP END PARALLEL DO

#pragma omg parallel for [clauses]

for loop

Clauses

51

• DO/for directive can take PRIVATE, FIRSTPRIVATE and
REDUCTION clauses which refer to the scope of the
loop

• Note that the parallel loop variable is PRIVATE by default

• loop indices are private by default in Fortran, but not in C

• PARALLEL DO/for directive can take all clauses
available for PARALLEL directive

• PARALLEL DO/for is not the same as DO/for or the same
as PARALLEL

Parallel DO/for Loops (cont.)

52

• With no additional clauses, the DO/for directive will
partition the iterations as equally as possible between
the threads

• However this is implementation dependent, and there
is still some ambiguity

e.g. 7 iterations, 3 threads. Could partition as 3+3+1 or 3+2+2

SCHEDULE Clause

53

• The SCHEDULE clause gives a variety of options for
specifying which loop iteration are executed by which thread

• Syntax:

C/C++: schedule(kind[, chunksize])

Fortran: SCHEDULE(kind[, chunksize])

where kind is one of

STATIC, DYNAMIC, GUIDED, AUTO or RUNTIME

and chunksize is an integer expression with positive value

• e.g. !$OMP DO SCHEDULE(DYNAMIC, 4)

STATIC Schedule

54

• With no chunksize specified, the iteration space is
divided into (approximately) equal chunks, and one
chunk is assigned to each thread in order (block
schedule)

• If chunksize is specified, the iteration space is divided
into chunks, each of chunksize iterations, and the
chunks are assigned cyclically to each thread in order
(block cyclic schedule)

STATIC Schedule

55

DYNAMIC Schedule

56

• DYNAMIC schedule divides the iteration space up into
chunks of size chunksize, and assigns them to
threads on a first-come-first-served basis

• i.e. as a thread finish a chunk, it is assigned the next
chunk in the list

• When no chunksize is specified, it defaults to 1

GUIDED Schedule

57

• GUIDED schedule is similar to DYNAMIC, but the
chunk starts off large and gets smaller exponentially

• The size of the next chunk is proportional to the
number of remaining iteration divided by the number
of threads

• The chunksize specifies the minimum size of the
chunks

• When no chunksize is specified, it defaults to 1

DYNAMIC and GUIDED Schedules

58

AUTO Schedule

59

• Lets the runtime have full of freedom to choose its own
assignment of iterations to threads

• If the parallel loop is executed many times, the
runtime can evolve a good schedule which has good
load balance and low overheads

Choosing a Schedule

60

• STATIC best for load balanced loops - least overhead

• STATIC, n good for loops with mild or smooth load
imbalance, but can induce overheads

• DYNAMIC useful if iterations have widely varying loads,
but ruins data locality

• GUIDED often less expensive than DYNAMIC, but beware
of loops where the first iterations are the most expensive

• AUTO may be useful if the loop is executed many times
over

SINGLE Directive

61

• Indicates that a block of code is to be executed by a
single thread only

• The first thread to reach the SINGLE directive will
execute the block

• There is a synchronisation point at the end of the
block: all other threads wait until block has been
executed

SINGLE Directive (cont.)

62

Syntax:

C/C++:

Fortran !$OMP SINGLE [clauses]
block

!$OMP END SINGLE

#pragma omp single [clauses]
structured block

SINGLE Directive (cont.)

63

#pragma omp parallel
{
setup(x);
#pragma omp single
{
input(y);

}
work(x,y);

}

SINGLE Directive (cont.)

64

• SINGLE directive can take PRIVATE and FIRSTPRIVATE
clauses

• Directive must contain a structured block: can not
branch into or out of it

MASTER Directive

65

• Indicates that a block of code should be executed by
the master thread (thread 0) only

• There is no synchronisation at the end of the block:
other threads skip the block and continue executing

MASTER Directive (cont.)

66

Syntax:

C/C++:

Fortran !$OMP MASTER
block

!$OMP END MASTER

#pragma omp master
structured block

Synchronisation

Why is It Required?

68

• Need to synchronise actions on shared variables

• Need to ensure correct ordering of reads and writes

• Need to protect updates to shared variables (not
atomic by default)

BARRIER Directive

69

• No thread can proceed reached a barrier until all the
other threads have arrived

• Note that there is an implicit barrier at the end of DO/for,
SECTIONS and SINGLE directives

• Syntax:

C/C++: #pragma omp barrier

Fortran: !$OMP BARRIER

• Either all threads or none must encounter the barrier:
otherwise DEADLOCK!

BARRIER Directive (cont.)

70

Example:

• Barrier required to force synchronisation on a

Critical Sections

71

• A critical section is a block of code which can be
executed by only one thread at a time

• Can be used to protect updates to shared variables

• The CRITICAL directive allows critical sections to be
named

• If one thread is in a critical section with a given name,
no other thread may be in a critical section with the
same name (though they can be in critical sections
with other names)

Critical Directive

72

• In Fortran, the names on the directive pair must match

• If the name is omitted, a null name is assumed (all unnamed
critical sections effectively have the same null name)

C/C++:

Fortran !$OMP CRITICAL [(name)]
block

!$OMP END CRITICAL [(name)]

#pragma omp critical [(name)]
structured block

Critical Directive (cont.)

73

Example: Pushing and popping a task stack

Atomic Directive

74

Atomic Directive (cont.)

75

Atomic Directive (cont.)

76

QUESTIONS
or

COMMENTS!

